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29.1 

Chapter 29: 

Crime Mode Split 
 

In this chapter, the third modeling step in the crime travel demand model is discussed, 
mode split. Mode split involves separating (splitting) the predicted trips from each origin zone to 
each destination zone into distinct travel modes (e.g., walking, bicycle, driving, train, bus). 
 

This model has both advantages and disadvantages for crime analysis. At a theoretical 
level, it is the most developed of the four stages since there has been extensive research on travel 
mode choice.  For crime analysis, on the other hand, it represents the >weakest link= in the 
analysis since there is very little available information on travel mode by offenders. Since 
researchers cannot interview the general public in order to document crimes committed by 
respondents nor, in most cases, even interview offenders after they have been caught, there is 
very little information on travel mode by offenders that has been collected.1 Consequently, we 
have to depend on the existing theory of travel mode choice and adapt it intuitively to crime data.  
The approach is solely theoretical and depends on the validity of the existing theory and on the 
intuitiveness of guesses.  Hopefully, in the future, there will be more information collected that 
would allow the model to be calibrated against some real data.  But, for the time being, we are 
limited in what can be done. 
 

Theoretical Background 
 

The theoretical background behind the mode split module is presented first.  Next, the 
specific procedures are discussed with the model being illustrated with data from Baltimore 
County. 
 

Utility of Travel and Mode Choice 
 

The key aim of mode choice analysis is to distinguish the travel mode that travelers (or, 
in the case of crime, offenders) use in traveling between an origin location and a destination 
location. In the travel demand model, the choice is for travel between a particular origin zone and 

                         
1  There is no reason this data could not be collected. Typically, many police departments collect information 

on >Method of departure= from a crime scene. When a police report is taken, the victim is sometimes asked 
how the offender left the scene. In most cases, the information is not recorded on the police forms, or at 
least those that have been examined. This information is probably unreliable in any case since many 
offenders will take the bus or leave their car nearby while they walk/run to the crime scene.  Still, if police 
departments were to put more effort into collecting this information and, perhaps, to validating it with 
arrested offenders, then it is possible to build up reliable data sets that can be used to model mode split.  
Until then, unfortunately, we have to rely on theory rather than evidence. 
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a particular destination zone. Thus, the trips that are distributed from each origin zone to each 
destination zone in the trip distribution module are further split into distinct travel modes. 
 

With few exceptions, the assumption behind the mode split decision is for a two-way trip.  
That is, if an offender decides on driving to a particular crime location, we normally assume that 
this person will also drive back to the origin location. Similarly, if the offender takes a bus to a 
crime location, then that person will also take the bus back to the origin location. There are, of 
course, exceptions.  A car thief may take a bus to a crime location, then steal a car and drive 
back.  But, in general, without information to the contrary, it is assumed that the travel mode is 
for a round trip journey.   
 

Underlying the choice of a travel mode is assumed to be a utility function. Chapter 21 
discusses the economic theory of utility choice, so the discussion here will be brief.  Essentially, 
mode split utility is a function that describes the benefits and costs of travel by that mode 
(Ortuzar & Willumsen, 2001).  This can be written with a conceptual equation: 
 
ݕݐ݈݅݅ݐܷ  ൌ ݂ሺܾ݂݁݊݁݅ݏݐ,  ሻ       (29.1)ݏݐݏ݋ܿ
 
where >f= is some function of the benefits and the costs.  The benefits have to do with the 
advantages in traveling to a particular destination from a particular origin while the costs have to 
do with the real and perceived costs of using a particular mode.  Since the benefits of traveling 
to a particular destination from a particular origin are probably equal, the differences in utility 
between travel modes essentially represent differences in costs (Train, 2009).  Thus, Equation 
29.1 breaks down to: 
 
ݕݐ݈݅݅ݐܷ  ൌ  ሻ         (29.2)ݏݐݏ݋ሺܿܨ
 
where ‘F’ is another function but this time of only the costs.  If different travel modes (e.g., 
driving, biking, walking) are each represented by a separate utility cost function, then they can be 
compared: 
 
ଵݕݐ݈݅݅ݐܷ  ൌ ଵݐݏ݋ଵሺܿܨ ൅ ଶݐݏ݋ܿ ൅ ଷݐݏ݋ܿ ൅	… .൅ܿݐݏ݋௞ሻ    (29.3a) 
ଶݕݐ݈݅݅ݐܷ  ൌ ଵݐݏ݋ଵሺܿܨ ൅ ଶݐݏ݋ܿ ൅ ଷݐݏ݋ܿ ൅	… .൅ܿݐݏ݋௞ሻ    (29.3b) 
ଷݕݐ݈݅݅ݐܷ  ൌ ଵݐݏ݋ଵሺܿܨ ൅ ଶݐݏ݋ܿ ൅ ଷݐݏ݋ܿ ൅	… .൅ܿݐݏ݋௞ሻ    (29.3c) 
 . 
 . 
௟ݕݐ݈݅݅ݐܷ  ൌ ଵݐݏ݋௟ሺܿܨ ൅ ଶݐݏ݋ܿ ൅ ଷݐݏ݋ܿ ൅	… .൅ܿݐݏ݋௞ሻ    (29.3l) 
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where Utility1 through UtilityL represents l distinct travel modes, cost1through costk represent k 
cost components and are variables, and F1 through Fl represent l different utility functions (one 
for each mode). 
 

There are several observations that can be made about this representation.  First, each of 
the cost components can be applied to all modes.  However, the cost components are variables 
in that the values may or may not be the same.  For example, if cost1 is the operating cost of 
traveling from an origin to a destination, the cost for a driver is, of course, a lot higher than for a 
bus passenger since the latter person shares that cost with other passengers. Similarly, if cost2 is 
the travel time from a particular origin zone to a particular destination zone, then travel by 
private automobile may be a lot quicker than by public bus. Time differences can be converted 
into costs by applying some type of hourly wage/price to the time.  To take one more example, 
for driving mode, there could be a cost in parking (e.g., in a central business district); for transit 
use, on the other hand, this cost component is zero.   In other words, each of the travel modes 
has a different cost structure.  The same costs can be enumerated, but some of them will not 
apply (i.e., they have a value of 0).  

 
Second, the costs can be perceived costs as well as real costs.  For example, a number of 

studies have demonstrated that private automobile use is seen by most people as far more 
convenient to than bus or train (e.g., see Schnell, Smith, Dimsdale, & Thrasher, 1973; Roemer & 
Sinha, 1974; WASHCOG, 1974; Carnegie-Mellon University, 1975; Johnson, 1978; Levine & 
Wachs, 1986). >Convenience= is defined in terms of ease of access and effort involved in travel 
(e.g., how long it takes to walk to a bus stop from an origin location, the number of transfers that 
have to made to reach a final destination, and the time it takes to walk from the last bus stop to 
the final destination).  While it is sometimes difficult to separate the effects of convenience 
from travel itself, it is clear that most people perceive this as a dimension in travel choice.  In 
turn, convenience can be converted into a monetary value in order to allow it to be calculated in 
a cost equation, for example how much people are willing to pay in time savings to yield an 
equivalent amount of convenience (e.g., asking how many more minutes in travel time by bus an 
individual would be willing to absorb in order to give up having to drive).   
 

Third, these costs can be considered at an aggregate as well as individual level.  At an 
aggregate level, they represent average or median costs (e.g., the average time it takes to travel 
between zone A and zone B by private automobile, bus, train, walking, or biking;  the average 
dollar value assigned by a sample of survey respondents to the convenience they associate in 
traveling by car as opposed to bus).   
 

On the other hand, at an individual level, the costs are specific to the individual.  For 
example, travel time differences between car and bus can be converted into an hourly wage using 
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the individual=s income (i.e., someone making $100,000 a year is going to price that time savings 
differently than someone making only $25,000 a year).   
 

Fourth, a more controversial point, the specific mathematical function that ties the costs 
together into a particular utility function may also differ.  Typically, most travel demand models 
have assumed that a similar mathematical function is used for all travel modes; this is the 
negative exponential function described below (Ortuzar and Willumsen, 2001; Domencich & 
McFadden, 1975). However, there is no reason why different functions cannot be used.  Thus, 
the equations above identify different functions for the modes, F1 through FL.  One can think of 
this in terms of weights.  Each of the different mathematical function weigh the cost 
components differently. 
 

It is an empirical question whether individuals apply different functions to evaluating the 
different modes.  For example, most people would not drive just to travel one block (unless it 
was pouring rain or unless a heavy object had to be delivered or picked up).  Even though it is 
convenient to get into a vehicle and drive the one block, most people see the effort involved 
(and, most likely, the fuel and oil costs) as not being worth it.  
 

In other words, it appears that a different utility function is being applied to walking as 
opposed to driving (i.e., walk up to a certain distance; drive thereafter).  A strict utility theorist 
might disagree with this interpretation saying that the per minute cost of walking the one block 
and back was less than the monetized per minute cost of operating the vehicle (which may 
include opening a garage door, getting into the vehicle, starting the vehicle, driving out of the 
parking spot, closing the garage door, and then driving the one block).  In other words, it could 
be argued that the difference in behavior has to do with the values of the different cost 
components, rather than the way they are weighed together (the mathematical function).  In 
retrospect, one can explain any difference. It is argued in this chapter, however, that crime trips 
appear to show different likelihoods by travel mode and that treating each of these functions as 
distinct allows more flexibility in the framework.  
 

Discrete Choice Analysis 
 

No matter how the utility functions are defined, they have to be combined in such a way 
as to allow a discrete choice.  That is, an offender in traveling from zone A to zone B makes a 
discrete choice on travel mode.  There may be a probability for travel by each mode, for 
example 60% by car and 40% by bus.  But, for an individual, the choice is car or bus, not a 
probability. The probabilities are obtained by a sample of individuals, for example of 10 
individuals 6 went by car and 4 went by bus. But, still, at the individual level, there is a distinct 
choice that was made. 
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Multinomial Logit Function 
 

A common mathematical framework that used is for mode choice modeling at an 
aggregate level is the multinomial logit function (Ortuzar & Willumsen, 2001; Oppenheim, 1980; 
Domincich & McFadden, 1975; Stopher & Meyburg, 1975).  Chapter 21 on discrete choice 
modeling discussed this model extensively but for individual decision makers. If there was data 
available on the individual travel mode choices made by offenders, then an individual level 
discrete choice model could be constructed.  However, till now, such data has not been 
available.  Consequently, the modeling has to occur for zone-to-zone interactions rather than for 
individuals choosing among zones. 

 
The multinomial logit model used is for aggregate zone-to-zone flows. That is, for all 

trips from zone	݅ to zone	݆, a multinomial model can be defined as: 
 

 ௜ܲ௝௅ ൌ
௘ೇ೔ೕ௅

∑ ௘ೇ೔ೕಽ಻
ೕసభ

         (29.4) 

 
where PijL is the probability of using a mode for any particular trip link (particular origin zone 
݅	to particular destination ݆), L is the travel mode, Vni is the representative utility (that observed 
by the researcher/analyst as opposed to total utility which includes unobserved factors) for zone 
݅,	among ݆	alternative destinations. The representative utility, in turn, is seen as a linear 
combination of independent variables (predictors) for travel from origin zone	݅, to destination 
zone ݆: 
 

 ௜ܸ௝௅ ൌ ௝௅ࢼ
ᇱ ௜ࢄ ൌ ∑ ௝௅ߚ ௜ܺ௝௅

௃
௝ୀଵ         (29.5) 

 
where VijL is the utility of traveling from origin zone ݅, to destination zone ݆, L is the travel 
mode, and βjL are coefficients.   
 
 Substituting equation 29.5 into equation 29.4, we have: 
 

 ௜ܲ௝௅ ൌ
௘
∑ ഁೕಽ೉೔ೕಽ
಻
ೕసభ

∑ ௘
∑ ഁೕಽ೉೔ೕಽ
಻
ೕసభ಻

ಽసభ

        (29.6) 

 
which relates the linear combination for any one mode to the sum of the linear combinations of 
all modes. 
 

Several observations can be made about this function.  First, the multinomial logit 
model relates the choice of alternatives to differences in the characteristics of the zones, both 
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origin and destination (the Xijl), rather than to the differences in the destination zones themselves.  
This is different than the more general conditional logit model which relates the choices to the 
characteristics of the alternatives (destinations) and to interactions between the origin zones and 
the destination zones (and is also discussed in Chapter 21). 

 
Second, each travel mode, L, has its own costs and benefits and can be evaluated by 

itself. That is, each origin zone have a different set of destination alternatives according to the 
characteristics of both the origin and destination zones.  That is, there is a distinct utility 
function for each mode.  This is the numerator of Equation 29.6.  However, the choice of any 
one mode is dependent on its utility value relative to other modes (the denominator of the 
equation).  The more choices that are available, obviously, the lower the probability that a 
particular origin-destination zone combination will have for that mode.  But the value 
associated with the mode (the utility) does not change.  As mentioned above, we generally 
assume that the benefit of traveling between any two zones is identical for all modes and, hence, 
any differences are due to costs.  
 

Third, the mathematical form is the negative exponential.  The exponential function is a 
growth function in which growth occurs at a constant rate (either positive - growth, or negative - 
decline).  The use of the negative exponential assumes that the costs are related to the 
likelihood as a function that declines at a constant rate.  It is actually a >disincentive= or 
>discount= function rather than a utility function, per se.  That is, as the costs increase, the 
probability of using that mode decreases, all other things being equal.  Still, for historical 
reasons, it is still called a utility function. 
 

Fourth, for any one mode, the total cost is a logarithmic function of individual cost 
components: 
 

௜௅ݕݐ݈݅݅ݐܷ  ൌ ݁∑ ఉೕಽ௑೔ೕಽ
಻
ೕసభ         (29.7) 

 

௜௅ሻݕݐ݈݅݅ݐሺܷ݊ܮ  ൌ ∑ ௝௅ߚ ௜ܺ௝௅
௃
௝ୀଵ        (29.8) 

 
where the cumulative cost is made up of independent predictors X1, X2 through XJ, and β1 
through βk are coefficients for the individual cost components. Thus, we see that the utility 
function is a loglinear model, as was seen in Chapter 13.  Thus, the utility function is Poisson 
distributed, declining at a constant rate with increasing cumulative costs.  Domincich and 
McFadden (1975) point out that the error term is not Poisson distributed, but skewed as a Type I 
extreme value distribution (sometimes called a Gumbel distribution; Train, 2009).  As discussed 
in Chapters 16-17, there are a variety of different Poisson models that incorporate skewed error 
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terms (Poisson-Gamma, Poisson-lognormal, COM-Poisson) and which could also be used to 
fine-tune the fit. Nevertheless, the mean utility is a Poisson-type function. 
 

Generalized Relative Utility Function 
 

One can generalize this further to allow any type of mathematical function.  While the 
Poisson has a long history and is widely used, allowing other non-linear functions allows greater 
flexibility. It is possible that individuals apply different weighting systems in evaluating different 
modes (e.g., a negative exponential for walking, but a lognormal function for driving). We 
certainly see what appear to be different functions when the actual travel behavior of individuals 
are examined (e.g., homeless individuals don=t walk everywhere even though the cost of walking 
long distances is cheaper in travel time than taking a bus2; people don=t drive or take a bus for 
very short distances, say a block or two).  Therefore, if we allow that there are different travel 
functions for different modes, then more flexibility is possible than by assuming a single 
mathematical function.   
 

We can, therefore, write a generalized relative utility function as: 
 

 ௜ܲ௝௅ ൌ
ிಽሺ௏೔ೕಽሻ

∑ ிಽሺ௏೔ೕಽሻ
ಽ
ಽసభ

ൌ
ூ೔ೕಽ

∑ ூ೔ೕ೗
ಽ
ಽసభ

        (29.9) 

 
where the terms are the same as in 29.4 except the function, FL, is some function that is specific 
to the travel mode, L.  The numerator is defined as the impedance of mode L in traveling from 
origin zone	݅ to destination zone ݆ while the denominator is the sum of all impedances. 
 

Notice that the ratio of the cost function for one mode relative to the total costs is also the 
ratio of the impedance for mode L relative the total impedance.  The total impedance was 
defined in Chapter 28 as the disincentive to travel as a function of separation (distance, travel 
time, cost).  We see that the share of a particular mode, therefore, is the proportion of the total 
impedance of that mode.  This share will vary, of course, with the degree of separation.  For 
any given separation, there will usually be a different share for each mode.  For example, at low 
separation between zones (e.g., zones that are next to each other), walking and biking are much 
more attractive than taking a bus or a train and, perhaps even driving.  At greater separation 
(e.g., zones that are 5 miles apart), walking and biking are almost irrelevant choices and the 
likelihood of driving or using public transit is much greater. In other words, the share that any 
one mode occupies is not constant, but varies with the impedance function. 

                         
2  In a survey of the travel behavior of homeless persons, it was noted that most homeless walked very short 

distances over the day even though the value of their time was very low. For longer trips, they still tended 
to take the bus rather than walk.  Survey on the travel behavior of very low income individuals.  Urban 
Planning Program, University of California at Los Angeles, 1987 (with Martin Wachs). 
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Why then cannot the mode split be estimated directly at the trip distribution stage?  If 
the trip distribution function is: 

 ௜ܶ௝ ൌ ߙ ௜ܲ
ఒߚ

஺ೕ
ഓ

ூ೔ೕ
         (28.12 repeat)  

 
and if these trips, in turn, are split into distinct modes using equation 29.9, could not 28.12 be 
re-written as: 
 

 ௜ܶ௝௅ ൌ ߙ ௜ܲ
ఒߚ

஺ೕ
ഓ

ூ೔ೕಽ
         (29.10) 

 
where TijL is the number of trips traveling from origin zone	݅ to destination zone ݆ by mode L, 
Pi is the production capacity of zone	݅, Aj is the attraction of zone	݆, α and β are constants that are 
applied to the productions and attractions respectively, λ and τ are >fine tuning= exponents of the 
productions and attractions respectively, and IijL, is the impedance of using mode L to travel 
between the two zones? The answer is, yes, it could be calculated directly.  If IijL was a 
perfectly defined impedance function (with no error), then the mode share could be calculated 
directly at the distribution stage instead of separating the calculations into two distinct stages. 
The problem, however, is that the impedance functions are never perfect (far from it, in fact) and 
that re-scaling is required both to get the origins and destinations balanced in the trip distribution 
stage and to ensure that the probabilities in equation 29.10 add to 1.0. The effect of these 
adjustments generally throws off a model such as equation 29.10. Consequently, the trip 
distribution and mode split stages are usually calculated as separate operations. 

 
Measuring Travel Costs 

 
The next question is what types of travel costs are there that define impedance? As 

mentioned above, there are real as well as perceived costs that affect a travel mode decision.  
Some of these can be measured easily, while others are very difficult requiring detailed surveys 
of individuals. Among these costs are: 
 

1. Distance or travel time.  As mentioned throughout this discussion, distance is 
only a rough indicator of cost since it is invariant with respect to time.  Actual 
travel time is a much better indicator because it varies throughout the day and can 
be easily converted into a travel time value, for example by multiplying by an 
average unit wage. 

 
2. Other real costs, such as the operating costs of a private vehicle (fuel, oil, 

maintenance), parking, and insurance.  Some of these can be subsumed under 
travel time value by working out an hourly price for travel. 



29.9 

3. Perceived costs, such as convenience, fear of being caught by an offender, ease of 
escape from a crime scene, difficulties in moving stolen goods, and fear of 
retaliation by other offenders or gangs). 

 
Some of these costs can be measured and some cannot.  For example, the value of travel 

time can be inferred from the median household income of a zone for aggregate analysis or from 
the actual household income for individual-level analysis.  Parking can be averaged by zone.  
Insurance costs can be estimated from zone averages if the data can be obtained. 
 

Many perceived costs also can be measured.  Convenience, for example, could be 
measured from a general survey. The fear of being caught can be inferred from the amount of 
surveillance in a zone (e.g., the number of police personnel, security guards, security cameras).  
Even though it may be a difficult enumeration process, it is still possible to measure these costs 
and come up with some average estimate. 
 

Other perceived costs, on the other hand, may not be easily measured.  For example, the 
fear an offender belonging to one gang has about retaliation from another gang is not easily 
measured. If one could map the ‘territory’ of a gang, then one could members of one territory 
would not commit a crime in another territory (Bernasco & Block, 2009). Similarly, the cost of 
moving stolen goods by a thief is not easily measured; one would need to know the location of 
the distributors of these goods.   
 

In practice, travel modelers make simple assumptions about costs because of the 
difficulty in measuring many of them.  For example, travel time is taken as a proxy for all the 
operating costs.  Parking costs can be incorporated through simple assumptions about the 
distribution across zones (e.g., zones within the central business district - CBD, are given an 
average high parking costs; zones that are central, but not in the CBD, are assigned moderate 
parking costs; zones that are suburban are assigned low parking costs).  It would be just too 
time consuming to document each and every cost affecting travel behavior, particularly if we are 
developing a model of offender travel. 
 

Nevertheless, theoretically, these are all potentially measurable costs.  They are real and 
probably have an impact in the travel decisions that offenders make. As researchers and analysts, 
we have to work towards articulating as many of these costs as possible in order to produce a 
realistic representation of offender travel.   
 

Aggregate and Individual Utility Functions 
 

One of the big debates in travel modeling is whether to use aggregate or individual utility 
functions to calculate mode share. The aggregate approach measures common costs for each 
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zone, assuming an average value. The disaggregate approach (sometimes called >second 
generation= models) measures unique costs for individuals, then sums upward to yield values for 
each zone pair.  Even though the end result is an allocation of costs to each zone pair, the 
articulation of unique costs at the individual level can, in theory, allow a more realistic 
assessment of the utility function that is applied to a region. 
 

The aggregate approach will measure costs by averages. Thus, a typical equation for 
driving mode might be: 
 
௜௝ݐݏ݋ܿ	݈ܽݐ݋ܶ  ൌ ଵߚ ௜ܶ௝௞ ൅ ଶߚ ௜ܲ௝௞       (29.11) 

 
where Tij is the average travel time between two zones,	݅ and	݆, and Pij is the average parking 
cost for parking in zone j.  Notice that there are a limited number of variables in an aggregate 
model (in this case, only two) and that the assigned average is for an entire zone. Notice also that 
the parking cost is applied only to the destination zone. It is assumed that any traveler will pay 
that fee in that zone irrespective of which origin zone he/she came from.   
 

A disaggregate approach can allow more cost components, if they are measured.  Thus, 
a typical equation for driving mode might be: 
 
௜௝௞ݐݏ݋ܿ	݈ܽݐ݋ܶ  ൌ ଵߚ ௜ܶ௝௞ ൅ ଶߚ ௜ܲ௝௞ ൅ ௜௝௞ܥଷߚ ൅ ௜௝௞ܯସߚ ൅ ହߚ ௜ܵ௝௞   (29.12) 

 
where Tijk is the travel time for individual k between two zones,	݅ and	݆, Pij is the average parking 
cost for parking in zone	݆, Cijk is the convenience of traveling to zone	݆ from zone	݅ for 
individual ݇, Mijk is the comfort and privacy experienced by individual k in traveling from zone 
݅ to zone ݆, and Sijk is the perceived safety experienced by individual k in traveling from zone ݅ 
to zone ݆.  Notice that there are more cost variables in the equation and that the model is 
targeted specifically to the individual, k.  Two individuals who live next door to each other and 
who travel to the same destination may evaluate these components differently.  If these 
individuals have substantially different incomes, then the value of the travel time will differ.  If 
one values privacy enormously while the other does not, then the cost of driving for the first is 
less than for the second.  Similarly, convenience is affected by both travel time and the ease of 
getting in and out of vehicle.  Finally, the perception of safety may differ for these two 
hypothetical individuals.  There are many studies that have documented the significant role 
played by safety in affecting, particularly, transit trips (Levine & Wachs, 1986). 
 

In other words, the aggregate approach applies a very elementary type of utility function 
whereas the disaggregate approach allows much more complexity and individual variability.  
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Of course, one has to be able to measure the individual cost components, a difficult task under 
most circumstances. 
 

There is also a question about which approach is more accurate for correctly forecasting 
actual mode splits.  Historically, most Metropolitan Planning Organizations have used the 
aggregate method because it=s easier.  However, more recent research (McFadden, 2002; 
Ben-Akiva & Lerman, 1985; Domincich & McFadden, 1975) has suggested that disaggregate 
modeling may be more accurate. At the very minimum, the disaggregate model is more 
amenable to policy interpretations because it is more behavioral. If one could interview travelers 
with a survey, then it is possible to explore the variety of cost factors that affect a decision on 
both destination and mode split, and a more realistic (if not unique) utility function derived.  
 

But, as mentioned above, with crime trips, this is very difficult, if not impossible, to do.  
Consequently, for the time being, we are stuck with an aggregate approach towards modeling the 
utility of travel by offenders. 

 
Tools for Estimating Mode Split in CrimeStat 
 

CrimeStat has two sets of tools for estimating the mode split model.  First, if individual 
level data on travel modes can be obtained, then the multinomial logit model in the Discrete 
Choice module can be used (see Chapters 21 and 22).  That is, if data on actual mode choices 
taken by offenders could be obtained with characteristics of both the offenders and the zones in 
which they lived or committed crimes in being associated with those choices, then the preferred 
method would be to use the multinomial logit to model the predictors of mode choice. 

 
Second, if individual level data on travel modes is not available (the usual circumstances 

in most police department), then an approximation to a utility function can be made. The 
approach, in this case, is to estimate a relative accessibility function and then apply that function 
to the predicted trip distribution. The relative accessibility function is a mathematical 
approximation to a utility function, rather than a measured utility function by itself.  Because 
the cost components cannot be measured, at least for offenders, we use an inductive approach.  
Reasonable assumptions are made and mathematical functions are found that fit these 
assumptions. 
 

Relative Accessibility 
 

The relative accessibility approach produces a plausible model, not an analytical one.  
The plausibility comes by making reasonable assumptions about actual travel behavior. One can 
assume that walking trips will occur for short trips, say under two miles.  Bicycle trips, on the 
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other hand, could occur over longer distances, but will still be relatively short (also, there is 
always the risk of traffic on the safety of bicycle trips). Transit trips (bus and train) will be used 
for moderately long distances but require an actual transit network.  Finally, driving trips are 
the most flexible because they can occur over any size distance and road network.  They are 
less likely to be used for very short trips, on the other hand, due to reasons discussed above.  
 

Hierarchical Approach to Estimating Mode Accessibility 
 
Using this approach, specific steps can be defined to produce a plausible accessibility 

model. The Mode Split tab in CrimeStat allows the estimation of a relative accessibility model. 
Figure 29.1 shows the setup page for the mode split module.  There are four tabs in the mode 
split module: 

 
1. The setup tab 
2. Calibrate mode split: I 
3. Calibrate mode split: II 
4. Calibrate mode split: III 
 
The setup tab defines the three files that are used in the module.  There is predicted 

origin file, a predicted destination file, and a predicted origin-destination trip file.  Both the 
predicted origin file and the predicted destination file have to be defined as the Primary file or 
Secondary file and ID fields have to be defined for each.  The predicted origin-destination trip 
file is input separately on this tab. The variable identifying the predicted number of trips must be 
defined. Figure 29.1 illustrates this one data set. 

 
The next three tabs define up to five separate travel modes. The first Calibrate mode split 

tab defines modes 1 and 2. The second tab defines modes 3 and 4 and the third defines mode 5. 
The user can assign any one mode to each of these available slots. For example, mode 1 could be 
walking; mode 2 could be driving; mode 3 could be bus; mode 4 could be train; and mode 5 
could be bicycle. There is no particular order to the assignment and not all five available modes 
have to be used. Figure 29.2 illustrates the defining of two modes on the ‘Calibrate mode split: I’ 
tab where mode 1 is walking and mode 2 is by bicycle. 

 
For each of the modes that are used, the user must define an impedance function.  The 

impedance function is a mathematical function that approximates the discounting of that mode 
with distance.  The user can use a pre-defined mathematical function or else estimate it using an 
already-calibrated impedance function (see Chapter 28, page 28.24). In the example in Figure 
 

 



Figure 29.1:

Mode Split Module



Figure 29.2:

The ‘Calibrate Model Split: I’ Tab
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29.2, a mathematical function is being used for both the walking mode (mode 1) and the bicycle 
mode (mode 2). For the walking mode, the following negative exponential function is used: 
 
 ௜ܻ௝௅ ൌ 0.02݁ି଺.ଽସ         (29.13) 

 
while bicycle mode uses a negative exponential function of the following form: 
 
 ௜ܻ௝௅ ൌ 0.002݁ିଶ.ଶସ         (29.14) 

 
 Note that these are not probabilities but frequencies. That is, equation 29.13 estimates the 
number of walking trips as a function of distance between two zones,	݅ and	݆.  Each equation 
discounts the likelihood of using that mode as a function of distance between the zones. The 
probabilities are estimated later when the frequency of all modes have been defined.   
 
 Spreadsheet for Estimating Mode Split Impedance Values 
 

To identify the parameters that produce a plausible model of mode frequency, an Excel 
spreadsheet has been developed for making these calculations (Mode Split Impedance 
Defaults.xls). It is part of the “Crime Travel Demand Sample Data.zip” file and can be 
downloaded from the CrimeStat download page. Figure 29.3 shows part of the spreadsheet. 

 
The spreadsheet has been defined with distance, but it can be adapted for travel time or 

travel cost as well. A spreadsheet has been used because it is more flexible than incorporating it 
as a routine in CrimeStat to estimate the parameters. There is not a single solution to the 
parameters estimates and the different choices can be seen more easily. 
 

 Define travel modes 
 
The following provides instructions on estimating the impedance values with the 

spreadsheet. In the CrimeStat mode split routine, up to five different modes are allowed.  First, 
the user should define the travel modes to be modeled. In the spreadsheet, these have default 
names of AWalk@, ABike@, ADrive@, ABus@, and ATrain@. The user is not required to use these 
names nor all five modes.  Clearly, if there is not a train system in the study area, then the 
ATrain@ mode does not apply.  Travel modelers use variations on these, such as Adrive 
alone@,@carpool@, Aautomobile@, Amotorcycle@, and so forth. 

 
 

 



Figure 29.3:

Estimating Mode Split Impedance Valuesg p p
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Define target proportions 
 

Second, define the target proportions. These are the expected proportions of travel for 
each mode. Where would such proportions come from?  There have been many studies of 
driving and transit behavior, but relatively few studies of bicycle and pedestrian use (Schwartz et 
al, 1999; Porter, Suhrbier & Schwartz, 1999; Turner, Shunk, & Hottenstein, 1998). There are not 
simple tables that one can look up default values. 

 
Other studies 

 
To solve this problem, examples were sought from different size metropolitan areas.  

Estimates of travel mode share for all trip purposes (work and non-work) were obtained from 
Ottawa (McCormick Rankin, 2011; Ottawa, 2008), Portland (Portland, 1998); and Houston3. 
Table 29.1 shows the estimated shares.  The Houston data does not include walking and biking 
shares, and transit trips are not distinguished by mode in the Portland and Ottawa data. 
 

Table 29.1: 

Estimated Mode Share for Three Metropolitan Areas 

All Trip Purposes 
 

Ottawa  Portland  Houston 
 
Population:   725 thousand  2.0 million  4.6 million 
     (1995)   (2001)   (2000) 
 
Percent of trips by:  (1995)   (1994)   (2025 forecast) 
Driving   73.5%   88.6%   98.3% 
Transit    15.2%    3.0    1.7%  

(bus 1.1%; rail 0.6%)  
Walking     9.6%    4.6%      - 
Bicycle     1.7%    1.0%      - 
Other      -    2.8%      - 
 

While it is difficult to generalize, walking is very much dependent on both the 
compactness of the city and the existence of an extensive transit system. In Houston, the transit 
system is primarily a commuter system whereas in Portland and Ottawa, it serves multiple 
purposes. Clearly, the more compact is the urban area, the more likely that trips will occur by 
transit, walking or biking.  But, even in the case of Ottawa where almost 10% of trips are by 

                         
3  Houston-Galveston Area Council. Personal communication. 2004. 
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walking, the majority of trips are by private vehicle.  In the United States and Canada, for 
metropolitan areas with extensive transit facilities (New York, Chicago, Boston, Montreal), a 
majority of regional trips are still by automobile. 

 
Based on this, some default values were selected and put into the spreadsheet. The 

spreadsheet requires that they are entered as proportions (not percentages). The defaults values 
were (Table 29.2): 
 

The user can modify these in the spreadsheet.  It is important that a user contact the 
local Metropolitan Planning Organization to find out what would be reasonable values for the 
urban area.  The default values are guesses based on a limited amount of data.  

 
Table 29.2: 

Default Mode Share Values 

Proportions 
Mode  Share 
Driving     .90 
Bus     .04 
Train     .01 
Walk     .04 
Bicycle     .01 

 
  Journey to work census 

 
An alternative approach is to use the Journey to Work data of the U.S. Census Bureau 

(2004).  During every census, the Census Bureau documents home-to-work >commute= trips and 
breaks down these data by mode share. They release these data under the title AJourney to Work@. 
The 2010 Journey to Work data set has not been released.  However, in 2000 in the United 
States, 87.9% of all home-to-work trips were by private vehicle (automobile, van, truck), 4.7% 
were by public transit (bus 2.5%; rail 2.1%; other 0.1%), 2.9% were by walking, 0.4% were by 
bicycle, 0.1% were by motorcycle, 0.7% were by other means, and 3.3% worked at home. 
 

National journey to work statistics for 1990 and 2000 and for metropolitan areas in 1990 
can be found at U.S. Census, 2009). Data on metropolitan areas for 2000 can be found in 
McGuckin and Srinivasan (2003).  In 2000, the home-to-work mode share for a sample of large 
metropolitan (including the 15 largest) areas is shown in Table 29.3.  They are rank-ordered by 
the 2000 population of the metropolitan area. 
 

As can be seen, the larger metropolitan areas generally have a higher share of transit use 
and walking than smaller metropolitan areas, but the differences are not that dramatic.  Further,  
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Table 29.3: 

Mode Share of Journey to Work Trips: 2000 
(From McGuckin & Srinivasan, 2003) 

 
Greater      Mode Share 
Metropolitan 2000  
Area Pop (M) Walk  Bicycle Drive Bus Rail Other* 
New York 21.1 5.6%     0.3% 65.7%   6.8% 17.1% 4.5% 
Los Angeles 16.4 2.6%     0.6% 87.6% 4.3% 0.3% 4.6% 
Chicago  9.2 3.1%     0.3% 81.5% 4.6% 6.6% 3.9% 
Washington DC  7.6 3.0%     0.3% 83.2% 4.1% 5.0% 4.4% 
San Francisco  7.0 3.3%     1.1% 81.0% 5.7% 3.5% 5.4% 
Philadelphia  6.2 3.9%     0.3% 83.6% 5.3% 3.3% 3.6% 
Detroit  5.5 1.8%     0.2% 93.4% 1.7% 0.0% 2.9% 
Boston  5.8 4.1%     0.4% 82.7% 3.2% 5.5% 4.1% 
Dallas  5.2 1.5%     0.1% 92.7% 1.6% 0.1% 4.0% 
Houston  4.7 1.6%     0.3% 91.3% 3.1% 0.0% 3.7% 
Atlanta  4.1 1.3%     0.1% 90.6% 2.4% 1.1% 4.5% 
Miami  3.9 1.8%     0.5% 90.1% 3.2% 0.5% 3.9% 
Seattle  3.6 3.2%     0.6% 84.4% 6.2% 0.0% 5.6% 
Phoenix  3.3 2.1%     0.9% 90.0% 1.9% 0.0% 5.1% 
Minneapolis/ 
St Paul   3.0 2.4%     0.4% 88.4% 4.4% 0.0% 4.4% 
Cleveland  2.9 2.1%     0.2% 91.1% 3.1% 0.3% 3.2% 
San Diego  2.8 3.4%     0.6% 86.9% 3.1% 0.2% 5.8% 
St Louis  2.6 1.6%     0.1% 92.5% 2.1% 0.2% 3.5% 
Denver  2.6 2.4%     0.7% 87.1% 4.2% 0.1% 5.5% 
Pittsburgh  2.4 3.6%     0.1% 87.1% 6.0% 0.1% 3.1% 
Portland  2.3 3.0%     0.8% 85.2% 5.1% 0.5% 5.4% 
Cincinnati  2.0 2.3%     0.1% 91.4% 2.8% 0.0% 3.4% 
Sacramento  1.8 2.2%     1.4% 88.9% 2.4% 0.3% 4.8% 
Kansas City  1.8 1.4%     0.1% 93.2% 1.2% 0.0% 4.1% 
Milwaukee  1.7 2.8%     0.2% 90.0% 3.9% 0.0% 3.1% 
Indianapolis  1.6 1.7%     0.2% 93.3% 1.2% 0.0% 3.6% 
Orlando  1.6 1.3%     0.4% 92.7% 1.6% 0.0% 4.0% 
San Antonio  1.6 2.4%     0.1% 90.9% 2.8% 0.0% 3.8% 
Norfolk  1.6 2.7%     0.3% 91.0% 1.7% 0.0% 4.3% 
Las Vegas  1.6 2.4%     0.5% 89.5% 3.9% 0.0% 3.7% 
Charlotte  1.5 1.2%     0.1% 93.8% 1.3% 0.0% 3.6% 
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Table 29.3: (continued) 
 
Greater      Mode Share 
Metropolitan 2000  
Area Pop (M) Walk  Bicycle Drive Bus Rail Other* 
New Orleans  1.3 2.7%     0.6% 87.7% 5.2% 0.0% 3.8% 
Salt Lake City  1.3 1.8%     0.4% 90.3% 2.7% 0.3% 4.5% 
Memphis  1.1 1.3%     0.1% 93.9% 1.6% 0.0% 3.1% 
Rochester  1.1 3.5%     0.2% 90.9% 1.9% 0.0% 3.5% 
Oklahoma City  1.1 1.7%     0.2% 93.8% 0.5% 0.0% 3.8% 
Louisville  1.0 1.7%     0.2% 92.9% 2.2% 0.0% 3.0% 
---------------------------------------------------------------------------------------------------------------------   
* Includes taxi, ferry, and working at home 
 
for even the largest metropolitan areas, the majority of the home-to-work trips are by private 
vehicle. 

 
The problem with these data, however, is that they only examine work trips. Nationally, 

home-to-work trips represent only about 15% of all daily trips (BTS, 2002). On the other hand, 
45% of daily trips are for shopping and errands and 27% are social and recreational. Further, 
non-work trips are even more likely to occur by automobile, and are generally shorter. For 
example, in Houston, for home-based non-work trips, only 1% of trips were by transit compared 
to 3.1% for home-to-work trips in 2004. These home-based non-work trips may be a better 
analogy to crime trips than work trips since they tend to be of similar trips lengths as crime trips. 

 
 

Thus, unless the user is willing to assume that a crime trip is like a work trip (which is 
questionable), then the Journey to Work tables are probably not the best guide for the target 
proportions.  Nevertheless, an examination of them is valuable to see how work trips are split 
among the various travel modes. 
 

Select mode functions 
 

Third, select mathematical functions that approximate accessibility utility.  Again, some 
plausible assumptions need to be made.  In CrimeStat, the user can select among five different 
mathematical functions (linear, negative exponential, normal, lognormal, truncated negative 
exponential).  The default functions are shown in Table 29.4 below. 
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Table 29.4: 

Default Mode Share Functions 
 

Mode  Function 
Walk  Negative exponential 
Bicycle  Negative exponential 
Driving  Lognormal 
Bus  Lognormal 
Train  Lognormal 

 
The reasoning behind this is that walking and biking are relatively short trips whereas 

transit modes involve intermediate length trips. Finally, driving can be used for any length trip 
other than very short trips (e.g., less than one or two blocks).  Thus, it is unlikely that an 
automobile will be used for very short trips (less than a quarter mile) and it is very unlikely that 
transit will be used for short trips (less than a half mile or more).  Nevertheless, the user can 
modify these choices and examine the appropriate column in the spreadsheet. 

 
Select model priorities 

 
Fourth, select the priorities for modeling the target. Unfortunately, there may not be a 

single solution that will yield the target proportions. Therefore, a decision needs to be made on 
which order the spreadsheet will be calculated. The default order is shown Table 29.5. 
 

Table 29.5: 

Default Mode Share Functions 
  

Order of 
Mode  Iteration 
Walk  1 
Bicycle  2 
Driving  3 
Bus  4 
Train  5 

 
The reasoning is that the offender first makes a decision on the length of the trip (short, 

medium, long, or the equivalent in travel time). Then, within each category, the offender makes a 
decision on which mode to choose. For very short trips, the default mode is walking.  For 
intermediate to long trips, the default choice is driving.  However, the user can change this 
order.   
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Iteratively estimate parameters 
 

Fifth, in the spreadsheet, iteratively adjust the parameters until the target proportion is 
reached.  Do this in the order selected in the above step.  Again, there is not a single solution 
that will produce the target proportion. For example, each of the mathematical functions has two 
or three parameters that can be adjusted: 
 

1. For the negative exponential, the coefficient and exponent 
2. For the normal distribution, the mean distance, standard deviation and coefficient 
3. For lognormal distribution, the mean distance, standard deviation and coefficient 
4. For the linear distribution, an intercept and slope 
5. For the truncated negative exponential, a peak distance, peak likelihood, intercept, 

and exponent.   
 

The target proportion can be achieved by adjusting any or all of the parameters.  For 
example, to achieve a target proportion of 0.05 (i.e., 5%) using the negative exponential, an 
infinite number of models can yield this, for example coefficient=0.0366, exponent=-2.63; 
coefficient=0.0459 or exponent=-5; coefficient=0.01966, exponent=-1; and so forth.  Therefore, 
there must be additional criteria to constrain the choices. 
 

One criterion is to set an approximate mean distance.  For example, with walking trips, 
the mean distance can be set to a half mile or for driving, the mean distance can be set to 6 miles.  
Then, check the approximate mean distance of the selected function. Though rarely will the exact 
mean distance be replicated, the calculated mean distance should be close to the ideal.  The one 
exception is for very short trips.  Since the intervals in the spreadsheet are a half mile each, 
there is considerable error for very short distances. 

 
Examine the graphs in the spreadsheet 

 
Another diagnostic tool is to examine the graph of the function in the spreadsheet (below 

the calculations).  Does the typical trip approximate the expected mean distance?  Does the 
selected function produce something that looks intuitive?  Admittedly, these are subjective 
decisions.  But, if the function looks strange, it can be caught and re-calculated. 
 

In short, the aim should be to produce a function that not only captures the target 
proportion, but looks plausible.  Several examples are shown below.  Figure 29.4 shows the 
default walking model using a negative exponential.  Figure 29.5 shows the default biking 
model, also using a negative exponential.  Figure 29.6 shows the default driving mode using a 
lognormal function. Figure 29.7 shows the default bus mode, also using a lognormal function, 
and Figure 29.8 shows the default train mode using a lognormal function. 



Figure 29.4:

Negative Exponential Function: Walk Mode
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Figure 29.5:

Negative Exponential Function: Bike Mode
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Figure 29.6:

Lognormal Function: Drive Mode
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Figure 29.7:

Lognormal Function: Bus Mode
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Figure 29.8:

Truncated Negative Exponential  Function: Train Modeg p
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Figure 29.9 shows the cumulative results of the default values.  This is also graphed in 
the spreadsheet, starting in cell I1. Notice how the relative accessibility function works. As 
distance increases, the mode proportions change. At very short distances, walking trips 
predominate with biking trips also getting a moderate share. As the distance increases, the 
proportions increasingly shift toward driving. Even though the likelihood of driving declines 
with distance, the other modes decline even faster. In other words, the relative accessibility 
function is estimating the relative shares of each mode as a function of the impedance (in this 
case, distance). Note also the relative differences in the frequency of trips.  Driving trips are far 
more frequent than any other mode.  Thus, compared to the individual graphs (figure 
29.4-29.8), the other modes are more muted than driving. 
 

Adapting spreadsheet for travel time or travel cost 
 

The illustrations to this point have used distance as an impedance unit.  However, other 
impedance units, such as travel time and generalized travel cost, can also be used.  These 
generally require a network (see below) in that weights have to be assigned to segments.  
Nevertheless, the same logic applies.  For each travel mode, a specific impedance function is 
estimated and then applied to the trip distribution matrix. 
 

Empirically Estimating the Mode-specific Impedance 
 

As mentioned at the beginning of this chapter, the lack of information about offender 
travel modes has necessitated the use of mathematical >guesses= about travel behavior.  
However, if it were possible to obtain actual information on travel modes by offenders, then this 
information could be utilized directly to estimate a much more accurate impedance function.  
The multinomial logit model in the Discrete Choice module could be used for this purpose (see 
Chapters 21 and 22).  The advantage would be enormous. Instead of guesses about likely 
impedance functions of specific travel modes, the user would have a function that was based on 
real data.  There should be a substantial improvement in modeling accuracy. However, these 
data have to be first collected. 

 
CrimeStat IV Mode Split Tools 
 

The CrimeStat mode split module allows the relative accessibility function to be 
calculated.  The following provides detailed instructions on running the model.  Figure 29.2 
above showed the setup page for the mode split routine and Figure 29.3 showed the setup for 
modes 1 and 2, in the example AWalk@ and ABicycle@.  The setup for modes 3, 4, and 5 are 
similar.   
 



Figure 29.9:

Relative Accessibility by Modey y
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Mode Split Setup 
 

On the mode split setup page, the predicted origin and predicted destination files must be 
input as the primary and secondary files.  If the origin and destination files are identical (i.e., all 
the origin zones are included in the destination zones), then the file must be input as the primary 
file.   
 

In addition, the user must input a predicted origin-destination trip file from the trip 
distribution module.  Finally, an assumed impedance value for trips from the AExternal zone@ 
must be specified.  The default is 25 miles. Choose a value that would represent a >typical= trip 
from outside the study region. 

For each mode, the user must provide a label for the name and define the mathematical 
function which is to be applied and specify the parameters.  The first time the routine is opened, 
the default values are listed. However, the user can change these. 
 
 
 
 
 

Constrain Transit Trips to Network 
 

The impedance will be calculated either directly or is constrained to a network.  The 
default impedance is defined with the type of distance measurement specified on the 
Measurement Parameters page (under Data setup). On the other hand, if the impedance is to be 
constrained to a network, then the network has to be defined.   
 

Default 
 

The default impedance is that specified on the Measurement parameters page.  If direct 
distance is the default distance (on the measurement parameters page), then all impedances are 
calculated as a direct distance. If indirect distance is the default, then all impedances are 
calculated as indirect (Manhattan) distance. If network distance is the default, then all 
impedances are calculated using the specified network and its parameters; travel impedance will 
automatically be constrained to the network under this condition. 
 

Constrain to network 
 

An impedance calculation should be constrained to a network when there are limited 
choices.  For example, a bus trip requires a bus route; if a particular zone is not near an existing 
bus route, then a direct distance calculation will be misleading since it will probably 

Hint: Once the parameters are entered, they can be saved on the Options 
page.  Then, they can be re-entered by loading the saved parameters file. 



29.31 

underestimate true distance.  Similarly, for a train trip, there needs to be an existing train route. 
Otherwise, the routine will assign transit trips where those are not possible (i.e., it will assign 
train trips where there are no train stations and it will assign bus trips where there are no bus 
routes).  The routine does not >know= whether there are transit routes and must be told where 
they are.  Even for walking, bicycling and driving trips, an existing network might produce a 
more realistic travel impedance than simply assuming a direct travel path.   
 

If the impedance calculation is to be constrained to a network, then the network must be 
defined. A more extensive discussion of a network is provided in Chapter 3 (under Type of 
distance measurement on the Measurement Parameters page) and in Chapter 30 in the discussion 
of the Trip Assignment module.  Essentially, a network is a series of connected segments that 
specify possible routes. Each segment has two end nodes (in CrimeStat, they are called 
>FromNode= and AToNode).  Depending on the type of network, the segments can be 
bi-directional (i.e., travel is allowed in either direction) or single directional (i.e., travel is 
allowed only from the AFromNode@ to the AToNode@).   
 

A critical component of a network for the mode split routine is that travel can only pass 
through nodes.  This means that two segments that are connected can allow a trip to pass over 
those two segments whereas two segments that are not connected cannot allow a trip to pass 
directly from one to the other. From outside the network, a trip connects to it at a node.  For a 
transit network, this can be critical.  For a bus route, it may or may not be important.  A 
precise bus network defines nodes by bus stops so that a trip can >enter= or >leave= the bus system 
at a real stop.  A less precise bus network defines nodes by the ends of segments (e.g., the end 
nodes of a TIGER segment). The routine will not know whether the node it enters or leaves from 
is a real bus stop or not. In the case of bus routes, it probably does not matter since they generally 
make very regular stops (every two or three blocks).  
 

Accurately defined transit networks 
 

For train networks, however, it is absolutely critical that the network be defined 
accurately.  The nodes must be legitimate stations; a trip can only enter or leave the train system 
through a station (i.e., it cannot enter or leave a train network at the end of an arbitrary segment 
node).  Most travel demand models use very precise bus and train networks that have been 
carefully checked; where errors occur, the networks are edited and updated.  

 
  Utility for creating transit network 
 
If the user does not have an edited transit network, one can be made in the trip 

assignment module.  There is a ACreate a transit network from primary file@ routine that will 
draw segments between input primary file points; the user inputs the station or bus stop locations 
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as the primary file and the routine creates a network from one point to the next in the same order 
as in the primary file (i.e., the primary file needs to be properly sorted in order to travel).  See 
Chapter 30 for more information about creating a transit network. 
 

Entering the network parameters 
 

The network is input by selecting AConstrain to network@ and click on the >Parameters= 
button.  A dialogue is brought up that allows the user to specify the network to be used.  The 
network file can be either a shape line or polyline file (the default) or another file, either dBase 
IV >dbf=, Microsoft Excel ‘xls/xlsx’,Microsoft Access >mdb=, Ascii >dat=, or an ODBC-compliant 
file.  If the file is a shape file, the routine will know the locations of the nodes.  All the user 
needs to do is identify a weighting variable, if used, and possible one way routes (>flags=).  For a 
dBase IV or other file, the X and Y coordinate variables of the end nodes must be defined. These 
are called the AFrom@ node and the AEnd@ node, though there is no particular order.   
 

An optional weight variable is allowed for both a shape or dbf file. The routine identifies 
nodes and segments and finds the shortest path.  By default, the shortest path is in terms of 
distance though each segment can be weighted by travel time, travel speed, or generalized cost; 
in the latter case, the units are minutes, hours, or unspecified cost units.  
 

Finally, the number of graph segments to be calculated is defined as the network limit.  
The default is 50,000 segments.  This can be changed, but be sure that this number is greater 
than the number of segments in your network.  

 
Minimum absolute impedance 

 
If a mode is constrained to a network, an additional constraint is needed to ensure 

realistic allocations of trips.  This is the minimum absolute impedance between zones. The 
default is 2 miles.  For any zone pair that is closer together than the minimum specified (in 
distance, time interval, or cost), no trips will be allocated to that mode.  This constraint is to 
prevent unrealistic transit trips being assigned to intra-zonal trips or trips between nearby zones. 
 

CrimeStat uses three impedance components for a constrained network:  
 

1. The impedance from the origin zone to the nearest node on the network (e.g., 
nearest rail station);  

 
2. The impedance along the network to the node nearest to the destination; and  

 
3. The impedance from that node to the destination zone. 
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Since most impedance functions for a mode constrained to a network will have the 
highest likelihood some distance from the origin, it=s possible that the mode would be assigned 
to, essentially, very short trips (e.g., the distance from an origin zone to a rail network and then 
back again might be modeled as a high likelihood of a train trip even though such a trip is very 
unlikely).   
 

For each mode that is constrained to a network, specify the minimum absolute 
impedance. The units will be the same as that specified by the measurement units. The default is 
2 miles. If the units are distance, then trips will only be allocated to those zone pairs that are 
equal to or greater in distance than the minimum specified.  If the units are travel time or speed, 
then trips will only be allocated to those zone pairs that are farther apart than the distance that 
would be traveled in that time at 30 miles per hour.  If the units are cost, then the routine 
calculates the average cost per mile along the network and only allocates trips to those zone pairs 
that are farther apart than the distance that would be traveled at that average cost.  
 

Applying the Relative Accessibility Function 
 
To apply the relative accessibility function, the parameter choices for each mode are 

entered into the mode split routine. All transit modes are then constrained 
Once the mode split setup has been defined and all transit modes have been constrained to a 
proper network, the mode split routine can be run.  
 

Figure 29.10 shows the top 300 walking crime trips in Baltimore County estimated with 
the default accessibility functions.  As seen, the vast majority of walking trips are intra-zonal 
(local).  There are only a couple of inter-zonal walking trip links shown.  The default 
impedance function assigned approximately 4% of the trips to this mode and the result is many 
intra-zonal trips. 
 

Figure 29.11 shows the top 300 bicycle crime trips in Baltimore County. There are fewer 
trips by bicycle and they also tend to be quite local.  The impedance function used for bicycle 
trips allocated approximately 1% of all trips to this mode.  Thus, it=s less frequent than walking 
mode.  There are proportionately more inter-zonal trips among the top 300 than for walking 
trips, but these tend to be quite short (travel between adjacent zones). 
 

On the other hand, driving is the predominant travel mode for the crime trips (Figure 
29.12).  The impedance function used allocated approximately 90% of the trips to driving.  
Among the top 300 links, there were no intra-zonal driving trips. The use of a lognormal function 
minimized intra-zonal travel.  
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To allocate bus and train trips, however, it was necessary to constrain them to a network.  
Separate bus and train networks were obtained from the Baltimore Metropolitan Council.  
Figure 29.13 shows the Baltimore bus network and Figure 29.14 shows the predicted bus trips 
superimposed over the bus network. Overall, about 4% of the total trips were allocated to the bus 
mode by the accessibility function. As seen, the trips tend to be moderate distances and tend to 
be close to the bus network. Constraining these trips by the network decreased the likelihood that 
the routine would assign a particular trip link that was far from the bus work to a bus trip.  
 

Finally, train crime trips were constrained to the train network. Figure 29.15 
superimposes the assigned train trips over the intra-urban rail network.  Overall, only 1% of the 
total trips were allocated to train mode.  Therefore, the number of trips for any zone pair is quite 
small.  The trips are generally longer than the bus trips, as might be expected, and they also 
tend to fall along the major rail lines. Some of the trips start quite far from the rail lines, so it=s 
possible that these are not realistic representations. Keep in mind that this is a mathematical 
model and is far from perfect. 
 

Overall, the mode split routine has produced a reasonable approximation to travel modes 
for crime trips.  Since there was no data upon which to calibrate the functions, reasonable 
guesses were made about the accessibility function.  The mathematical model produced a 
plausible representation of these assumptions, generally fitting into what we know about crime 
travel patterns. 
 

Usefulness of Mode Split Modeling of Crime Trips 
 

The mode split model is a logical extension of the travel demand framework.  For 
transportation planning, it is an important step in the process.  But, it also is important for crime 
analysis.  First, it addresses the complexity of travel by separating the trips from specific origins 
to specific destinations into distinct modes. In this sense, it adds more realism to our 
understanding of criminal travel behavior. The Journey-to-crime literature, which has been used 
by crime analysts and criminal justice researchers to Aunderstand@ criminal travel behavior, is 
simplistic in this respect. It assumes a single mode, though that is rarely articulated by the 
researchers.  By pointing out typical travel distances by offenders circumvents the critical 
question of how they made the trip.   This was, perhaps, not as critical 50-60 years ago when 
most crimes were committed within a smaller community and it could be assumed that most 
offenders walked to the crime location.  But in the post- World War era, automobile travel has 
become increasingly dominate.  This model assumes that the vast majority of crime trips are 
taken by automobile.  While there is currently no data to prove that assertion, it follows from 
the transportation patterns that have become widespread in the U.S. and elsewhere. 
 
  



Figure 29.13:
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There is a second reason why an analysis of crime travel mode can be important.  If the 
limitations of travel mode information could be improved through better and more careful data 
collection by police and other law enforcement agencies, this type of analysis could be very 
useful for policing. For one thing, it could allow more focused police deployment.  For 
neighborhoods with a predominance of walking crime trips, then a police foot patrol could be 
most effective. Conversely, for neighborhoods with a predominance of driving crime trips, then 
patrol cars are probably the most effective. Police intuitively understand these characteristics, but 
the crime mode split model makes this more explicit. 

 
For another thing, a mode split analysis of crime can better help crime prevention efforts. 

As the Baltimore data suggest, many of the local (intra-zonal) crime trips are committed around 
housing projects and in very low income communities. Most likely, this is a by-product of 
poverty, lack of local employment opportunities, deteriorated housing, and even poor 
surveillance. Since teenagers are more likely to not own vehicles, it might be expected that the 
majority of these local crime trips are committed by very young offenders (see Levine & Lee, 
2012).  This can be useful in crime prevention. Again, AWeed and Seed@ and after-school 
programs are generally targeted to youth from very low income neighborhoods. What is shown 
by the mode split analysis is probably the crime patterns associated with these neighborhoods.  
Even though it is intuitively understood, the mode split analysis quantifies these relationships in 
an explicit manner. 
 

In short, a mode split analysis of crime trips is an important tool for crime analysts and 
criminal justice researchers. If correctly calibrated, it can help focus police enforcement and 
crime prevention efforts more specifically and can improve the theory of criminal travel 
behavior. 
 

Hopefully, police departments will start to improve the quality of data in capturing likely 
travel modes while taking incident reports.  Even though most police departments have an item 
similar to AMethod of departure@, there has not been a lot of emphasis on this information and 
most crime data sets are deficient on this information.  However, with improved data will come 
more accurate accessibility functions and, hopefully, even real utility functions where actual 
costs are measured.  The expectation is that this will happen and we should work towards 
accelerating the process. 

 
Limitations to the Mode Split Methodology for Crime Analysis 
 

There are also limitations to the method, particularly the aggregate approach.  First, the 
aggregate approach does not consider individuals, only properties associated with zones (e.g., 
average travel time between two zones).  As mentioned earlier, the accessibility function used 
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(or the underlying utility theory) is much simpler for zones than for individuals. Consequently, 
the analysis is cruder at an aggregate level than at an individual level. Policy scenarios are much 
more limited with aggregate mode split than with individual-level models.  For example, if an 
analyst wanted to explore what was the likely effect of increased public surveillance on walking 
behavior by pickpockets, it is more difficult to do with aggregate data than with individual data.  
For example, it could be hypothesized that actual pickpockets are more sensitive to increased 
public surveillance than, say, car thieves, but this cannot be tested at the aggregate level.  
Instead, some general characteristics are assigned to all individuals (e.g., the number of security 
personnel in a zone). 

Second, the zonal model for mode split (as with trip distribution) cannot explain 
intra-zonal travel. For intra-zonal trips, it is inaccurate and generally defaults to simple choices 
(e.g., walking, biking or driving).  For example, bus or train mode can rarely be applied at an 
intra-zonal level because there are usually too few network segments that traverse a zone and the 
segments rarely stop within the zone.  While this deficiency also applies to the trip distribution 
model, the dependence on a network for transit modes, particularly, leads to underestimation of 
transit use for very short trips. 
 

Third, the zonal mode split model cannot explain individual differences. This goes back 
to the first point that a single utility function is being applied at the zonal level. Thus, the value 
of time to different individuals living in the same zone cannot be examined; instead, everyone is 
given the same value. 
 

Fourth, the aggregate mode split model does not analyze time of day very well.  The 
probabilities are assigned to all trips, rather than to trips taken at particular times of the day.  To 
conduct that analysis, an analyst has to break down crimes by time of day and model the 
different periods separately.  Aside from being awkward, the summed trips need to be balanced 
to ensure that they sum to the total number of trips. 
 

Fifth, and finally, the mode split model, both aggregate and disaggregate, cannot explain 
linked trips (sometimes called trip chaining).  An offender might leave home one day, go out to 
eat, visit a friend, commit a street robbery, go to a >fence= to distribute the goods, buy drugs from 
a drug dealer, and then finally go home.  The mode split model treats each of these as separate 
trips; in the case of crime mode split, there are three distinct crime trips - committing the 
robbery, selling the stolen goods to the >fence=, and buying the drugs from the drug dealer.  The 
model does not understand that these are related events, but instead assigns separate mode 
probabilities to each trip.  Thus, it is possible to produce absurd choices, such as driving to the 
crime scene, taking the bus to the drug dealer, and then biking home.  In this respect, the 
disaggregate approach is equally flawed as the aggregate since both treat each trip as 
independent events.  The solution to this lies in a >third generation= of travel modeling in which 
individual trip makers are simulated over a day; activity-based modeling, as it is known, is still in 
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a research stage (FHWA, 2009; Culp & Lee, 2005; Miller & Salvini, 1999). But, it will 
eventually emerge as the dominant travel demand modeling algorithm.  
 

Conclusions 
 

Nevertheless, mode split modeling can be a very useful analysis step for crime analysis.  
It represents a new approach for crime analysis and one with many useful possibilities.  It will 
require building more systematic databases in order to document travel modes.  But, the 
possibilities that it offers up can be important for crime analysts and criminal justice researchers 
alike. 
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